On the "redundant" null-pairs of functions connected by a general Linear Fractional Transformation
نویسندگان
چکیده
We investigate here the interpolation conditions connected to an interpolating functionQ obtained as a Linear Fractional Transformation of another function S. In general, the degree ofQ is equal to the number of interpolating conditions plus the degree of S. We show that, if the degree of Q is strictly less that this quantity, there is a number of complementary interpolating conditions which has to be satisfied by S. This induces a partitioning of the interpolating conditions in two sets. We consider here the case where these two sets are not necessarily disjoint. The reasoning can also be reversed (i.e. from S to Q). To derive the above results, a generalized interpolation problem, which relaxes the usual assumptions on disjointness of the interpolation nodes and the poles of the interpolant, is formulated and solved.
منابع مشابه
Linear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach
We develop an algorithm for the solution of multiobjective linear plus fractional programming problem (MOL+FPP) when some of the constraints are homogeneous in nature. Using homogeneous constraints, first we construct a transformation matrix T which transforms the given problem into another MOL+FPP with fewer constraints. Then, a relationship between these two problems, ensuring that the solu...
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملAn iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملTOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming
The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- MCSS
دوره 24 شماره
صفحات -
تاریخ انتشار 2012